H.265(HEVC)简介
H.265已经在2013年正式批准为ITU标准,H.265即HEVC。
H265编码出来了。在码流、编码质量、算法上有了相当大的改善和优化,最终效果为仅需原先的一半带宽即可播放视觉效果相同的视频
迅雷看看于3月30日宣布首发支持H.265 .PPS也表示跟随,于4月1日 发布H.265体验版 我今天才抽出空闲测试了下。
新版的迅雷看看在线 H265 ,码率387kbps、720p的画皮片段 占用率不算高50%-27%,用的是戴尔的I5笔记本 2.67主频双核四线程,系统win7 64位
性能提升
在运动预测方面,下一代算法将不再沿袭“宏块”的画面分割方法,而可能采用面向对象的方法,直接辨别画面中的运动主体。在变换方面,下一代算法可能不再沿袭 基于付立叶变换的算法族,有很多文章在讨论,其中提请大家注意所谓的“超完备变换”,主要特点是:其MxN的变换矩阵中,M大于N,甚至远大于N,变换后 得到的向量虽然比较大,但其中的0元素很多,经过后面的熵编码压缩后,就能得到压缩率较高的信息流。
关于运算量,H.264的压缩效率比MPEG-2提高了1倍多,其代价是计算量提高了至少4倍,导致高清编码需要100GOPS的峰值计算能力。尽管如此, 仍有可能使用目前的主流IC工艺和普通设计技术,设计出达到上述能力的专用硬件电路,且使其批量生产成本维持在原有水平。5年(或许更久)以后,新的技术 被接受为标准,其压缩效率应该比H.264至少提高1倍,估计对于计算量的需求仍然会增加4倍以上。随着半导体技术的快速进步,相信届时实现新技术的专用 芯片的批量生产成本应该不会有显著提高。因此,500GOPS,或许是新一代技术对于计算能力的需求上限。
HEVC(H.265)的技术亮点
作为新一代视频编码标准,HEVC(H.265)仍然属于预测加变换的混合编码框架。然而,相对于H.264,H.265 在很多方面有了革命性的变化。
下表列出了HM4.0(HEVC参考代码)相对于JM18.0 BD-Rate对比:
表1 HEVC相对于H.264的压缩效率提升数据列表
由表中数据可见,在Low Delay的情况下,HEVC(HM4.0)相对于H.264比特率平均下降44%。
二、 HEVC(H.265)的技术亮点
作为新一代视频编码标准,HEVC(H.265)仍然属于预测加变换的混合编码框架。然而,相对于H.264,H.265 在很多方面有了革命性的变化。HEVC(H.265)的技术亮点有:
1. 灵活的编码结构
在H.265中,将宏块的大小从H.264的16×16扩展到了64×64,以便于高分辨率视频的压缩。同时,采用了更加灵活的编码结构来提高编码效 率,包括编码单元(Coding Unit)、预测单元(Predict Unit)和变换单元(Transform Unit)。如图1所示:
图1 编码单元(CU)、预测单元(PU)、变换单元(CU)
其中编码单元类似于H.264/AVC中的宏块的概念,用于编码的过程,预测单元是进行预测的基本单元,变换单元是进行变换和量化的基本单元。这三个单 元的分离,使得变换、预测和编码各个处理环节更加灵活,也有利于各环节的划分更加符合视频图像的纹理特征,有利于各个单元更优化的完成各自的功能。
2. 灵活的块结构—-RQT(Residual Quad-tree Transform)
RQT是一种自适应的变换技术,这种思想是对H.264/AVC中ABT(Adaptive Block-size Transform)技术的延伸和扩展。对于帧间编码来说,它允许变换块的大小根据运动补偿块的大小进行自适应的调整;对于帧内编码来说,它允许变换块的 大小根据帧内预测残差的特性进行自适应的调整。大块的变换相对于小块的变换,一方面能够提供更好的能量集中效果,并能在量化后保存更多的图像细节,但是另 一方面在量化后却会带来更多的振铃效应。因此,根据当前块信号的特性,自适应的选择变换块大小,如图2所示,可以得到能量集中、细节保留程度以及图像的振 铃效应三者最优的折中。
图2 灵活的块结构示意图
3、采样点自适应偏移(Sample Adaptive Offset)
SAO在编解码环路内,位于Deblock之后,通过对重建图像的分类,对每一类图像像素值加减一个偏移,达到减少失真的目的,从而提高压缩率,减少码流。
采用SAO后,平均可以减少2%~6%的码流,而编码器和解码器的性能消耗仅仅增加了约2%。
4、自适应环路滤波(Adaptive Loop Filter)
ALF在编解码环路内,位于Deblock和SAO之后,用于恢复重建图像以达到重建图像与原始图像之间的均方差(MSE)最小。ALF的系数是在帧级 计算和传输的,可以整帧应用ALF,也可以对于基于块或基于量化树(quadtree)的部分区域进行ALF,如果是基于部分区域的ALF,还必须传递指 示区域信息的附加信息。
5、并行化设计
当前芯片架构已经从单核性能逐渐往多核并行方向发展,因此为了适应并行化程度非常高的芯片实现,HEVC/H265引入了很多并行运算的优化思路, 主要包括以下几个方面:
(1) Tile
如图3所示,用垂直和水平的边界将图像划分为一些行和列,划分出的矩形区域为一个Tile,每一个Tile包含整数个LCU(Largest Coding Unit), Tile之间可以互相独立,以此实现并行处理:
图3 Tile划分示意图
(2) Entropy slice
Entropy Slice允许在一个slice内部再切分成多个Entropy Slices,每个Entropy Slice可以独立的编码和解码,从而提高了编解码器的并行处理能力:
图4 每一个slice可以划分为多个Entropy Slice
(3) WPP(Wavefront Parallel Processing)
上一行的第二个LCU处理完毕,即对当前行的第一个LCU的熵编码(CABAC)概率状态参数进行初始化,如图5所示。因此,只需要上一行的第二个LCU编解码完毕,即可以开始当前行的编解码,以此提高编解码器的并行处理能力:
图5 WPP示意图
H.265编码对视频的损伤
与HD-SDI非压缩视频图像不同的是,经过压缩的视频图像或多或少的都会对图像有所损伤,特别还是在网络传输过程中,更是避免不了丢包的现象。客观地说, 只要视频图像存在压缩既会有损伤,当然在高效率的压缩也难逃这一弊端。从客观情况分析来看,视频编码损伤主要有三大类:编码标准、IP网络、Error- prone通信,细致地说这对图像模糊、噪声、数据丢包、延时、抖动以及无线信道传输带来的失真都不可避免。
尽管H.265真的能够实现超出H.264的多倍高清,一些视频损失是通过数据测算出来的,肉眼则看到就是高清晰的画质。以目前大安防市场的视频会议来看, 在高清晰画质的不断需求之下,高压缩标准的确能够进一步推动市场,只不过成本还是用户最为关注的话题。理想的价格才是最终产品流向市场的王道。